preprocess.py 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. import os
  2. import json
  3. import ast
  4. import operator as op
  5. import numpy as np
  6. from collections import namedtuple
  7. from scipy.linalg import block_diag
  8. for loc in os.curdir, os.path.expanduser("~"), "/etc/hdpg1d":
  9. try:
  10. with open(os.path.join(loc, "config.json")) as source:
  11. configdata = json.load(source)
  12. except IOError:
  13. pass
  14. # supported operators
  15. operators = {ast.Add: op.add, ast.Sub: op.sub, ast.Mult: op.mul,
  16. ast.Div: op.truediv, ast.Pow: op.pow, ast.BitXor: op.xor,
  17. ast.USub: op.neg}
  18. def eval_expr(expr):
  19. return eval_(ast.parse(expr, mode='eval').body)
  20. def eval_(node):
  21. if isinstance(node, ast.Num): # <number>
  22. return node.n
  23. elif isinstance(node, "x"):
  24. return node.n
  25. elif isinstance(node, ast.BinOp): # <left> <operator> <right>
  26. return operators[type(node.op)](eval_(node.left), eval_(node.right))
  27. elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1
  28. return operators[type(node.op)](eval_(node.operand))
  29. else:
  30. raise TypeError(node)
  31. def queryYesNo(question, default="yes"):
  32. valid = {"yes": True, "y": True, "ye": True,
  33. "no": False, "n": False}
  34. if default is None:
  35. prompt = " [y/n] "
  36. elif default == "yes":
  37. prompt = " [Y/n] "
  38. elif default == "no":
  39. prompt = " [y/N] "
  40. else:
  41. raise ValueError("invalid default answer: '%s'" % default)
  42. while True:
  43. print(question + prompt, end='')
  44. choice = input().lower()
  45. if default is not None and choice == '':
  46. return valid[default]
  47. elif choice in valid:
  48. return valid[choice]
  49. else:
  50. print("Please respond with 'yes' or 'no' "
  51. "(or 'y' or 'n').\n")
  52. def setDefaultCoefficients():
  53. question = "Do you want to use the default parameters?"
  54. isDefault = queryYesNo(question, "yes")
  55. if (isDefault):
  56. diffDefault = configdata["coefficients"]["diffusion"]
  57. convDefault = configdata["coefficients"]["convection"]
  58. reactionDefault = configdata["coefficients"]["reaction"]
  59. pOrderDefault = configdata["coefficients"]["pOrder"]
  60. numEleDefault = configdata["coefficients"]["numEle"]
  61. tauPlusDefault = configdata["coefficients"]["tauPlus"]
  62. tauMinusDefault = configdata["coefficients"]["tauMinus"]
  63. coeff = coefficients(diffDefault, convDefault, reactionDefault,
  64. pOrderDefault, numEleDefault,
  65. tauPlusDefault, tauMinusDefault)
  66. else:
  67. coeff = coefficients.fromInput()
  68. return coeff
  69. def shape(x, p):
  70. """generate p shape functions and its first order derivative
  71. at the given location x. x can be an array"""
  72. A = np.array([np.linspace(-1, 1, p)]).T**np.arange(p)
  73. C = np.linalg.inv(A).T
  74. x = np.array([x]).T
  75. shp = C.dot((x**np.arange(p)).T)
  76. shpx = C[:, 1::1].dot((x**np.arange(p - 1) * np.arange(1, p)).T)
  77. return shp, shpx
  78. def forcing(x):
  79. f = np.zeros(len(x))
  80. for i, forcingItem in enumerate(x):
  81. forcingExpr = configdata["forcing"]
  82. f[i] = eval_expr(forcingExpr.replace("x", str(forcingItem)))
  83. return f
  84. def boundaryCondition(case):
  85. if case == 'primal':
  86. # primal problem
  87. bcLeft = configdata["boundary"]["left"]
  88. bcRight = configdata["boundary"]["right"]
  89. bc = [bcLeft, bcRight]
  90. if case == 'adjoint':
  91. # adjoint problem
  92. bc = [0, 1]
  93. return bc
  94. class coefficients:
  95. def __init__(self, diff, conv, reaction, pOrder, numEle, tauPlus, tauMinus):
  96. if diff == 0:
  97. # set the diffusion constant to a small number
  98. # to avoid division by zero error
  99. diff = 1e-16
  100. self.DIFFUSION = diff
  101. self.CONVECTION = conv
  102. self.REACTION = reaction
  103. self.pOrder = pOrder
  104. self.numEle = numEle
  105. self.TAUPLUS = tauPlus
  106. self.TAUMINUS = tauMinus
  107. @classmethod
  108. def fromInput(cls):
  109. while True:
  110. try:
  111. print("Please provide the following coefficients.")
  112. diff = float(input("Diffusion constant (float): "))
  113. conv = float(input("Covection constant (float): "))
  114. reaction = float(input("Reaction constant (float): "))
  115. pOrder = int(input("Order of polynomials (int): "))
  116. numEle = int(input("Number of elements (int): "))
  117. tauPlus = float(input("Stablization parameter plus (float): "))
  118. tauMinus = float(
  119. input("Stablization parameter minus (float): "))
  120. except ValueError:
  121. print("Sorry, wrong data type.")
  122. continue
  123. else:
  124. print("Something is wrong. Exit.")
  125. break
  126. return cls(diff, conv, reaction, pOrder, numEle, tauPlus, tauMinus)
  127. class discretization(object):
  128. """Given the problem statement and current mesh,
  129. construct the discretization matrices"""
  130. def __init__(self, coeff, mesh, enrich=None):
  131. self.mesh = mesh
  132. self.coeff = coeff
  133. self.enrich = enrich
  134. # the following init are for the sake of simplicity
  135. self.numBasisFuncs = coeff.pOrder + 1
  136. self.tau_pos = coeff.TAUPLUS
  137. self.tau_neg = coeff.TAUMINUS
  138. self.conv = coeff.CONVECTION
  139. self.kappa = coeff.DIFFUSION
  140. self.numEle = len(mesh) - 1
  141. self.dist = self.distGen()
  142. # shape function and gauss quadrature
  143. self.gqOrder = 5 * self.numBasisFuncs
  144. self.xi, self.wi = np.polynomial.legendre.leggauss(self.gqOrder)
  145. self.shp, self.shpx = shape(self.xi, self.numBasisFuncs)
  146. # enrich the space if the enrich argument is given
  147. if enrich is not None:
  148. self.shpEnrich, self.shpxEnrich = shape(
  149. self.xi, self.numBasisFuncs + enrich)
  150. def distGen(self):
  151. dist = np.zeros(self.numEle)
  152. for i in range(1, self.numEle + 1):
  153. dist[i - 1] = self.mesh[i] - self.mesh[i - 1]
  154. return dist
  155. def matGroup(self):
  156. lhsMat = self.lhsGen()
  157. F, L, R = lhsMat.F, lhsMat.L, lhsMat.R
  158. eleMat = self.eleGen()
  159. A, B, BonU, D = eleMat.A, eleMat.B, eleMat.BonU, eleMat.D
  160. faceMat = self.interfaceGen()
  161. C, E, G, H = faceMat.C, faceMat.E, faceMat.G, faceMat.H
  162. matGroup = namedtuple(
  163. 'matGroup', ['A', 'B', 'BonU', 'C', 'D', 'E', 'F', 'G', 'H', 'L', 'R'])
  164. return matGroup(A, B, BonU, C, D, E, F, G, H, L, R)
  165. def lhsGen(self):
  166. """Generate matrices associated with left hand side"""
  167. if self.enrich is not None:
  168. # when enrich is given
  169. # provide matrices used in the DWR residual calculation
  170. numBasisFuncs = self.numBasisFuncs + self.enrich
  171. shp = self.shpEnrich
  172. else:
  173. numBasisFuncs = self.numBasisFuncs
  174. shp = self.shp
  175. # forcing vector F
  176. F = np.zeros(numBasisFuncs * self.numEle)
  177. for i in range(1, self.numEle + 1):
  178. f = self.dist[i - 1] / 2 \
  179. * shp.dot(self.wi * forcing(self.mesh[i - 1] +
  180. 1 / 2 * (1 + self.xi) *
  181. self.dist[i - 1]))
  182. F[(i - 1) * numBasisFuncs:i * numBasisFuncs] = f
  183. F[0] += (self.conv + self.tau_pos) * boundaryCondition('primal')[0]
  184. F[-1] += (-self.conv + self.tau_neg) * boundaryCondition('primal')[1]
  185. # L, easy in 1d
  186. L = np.zeros(self.numEle - 1)
  187. # R, easy in 1d
  188. R = np.zeros(numBasisFuncs * self.numEle)
  189. R[0] = boundaryCondition('primal')[0]
  190. R[-1] = -boundaryCondition('primal')[1]
  191. lhsMat = namedtuple('lhsMat', ['F', 'L', 'R'])
  192. return lhsMat(F, L, R)
  193. def eleGen(self):
  194. """Generate matrices associated with elements"""
  195. if self.enrich is not None:
  196. numBasisFuncsEnrich = self.numBasisFuncs + self.enrich
  197. shpEnrich = self.shpEnrich
  198. shpxEnrich = self.shpxEnrich
  199. b = (self.shpx.T * np.ones((self.gqOrder, self.numBasisFuncs))
  200. ).T.dot(np.diag(self.wi).dot(shpEnrich.T))
  201. # BonQ is only used in calculating DWR residual
  202. BonQ = block_diag(*[b] * (self.numEle)).T
  203. else:
  204. numBasisFuncsEnrich = self.numBasisFuncs
  205. shpEnrich = self.shp
  206. shpxEnrich = self.shpx
  207. BonQ = None
  208. a = 1 / self.coeff.DIFFUSION * \
  209. shpEnrich.dot(np.diag(self.wi).dot(self.shp.T))
  210. A = np.repeat(self.dist, self.numBasisFuncs) / \
  211. 2 * block_diag(*[a] * (self.numEle))
  212. b = (shpxEnrich.T * np.ones((self.gqOrder, numBasisFuncsEnrich))
  213. ).T.dot(np.diag(self.wi).dot(self.shp.T))
  214. B = block_diag(*[b] * (self.numEle))
  215. d = self.coeff.REACTION * \
  216. shpEnrich.dot(np.diag(self.wi).dot(self.shp.T))
  217. # assemble D
  218. dFace = np.zeros((numBasisFuncsEnrich, self.numBasisFuncs))
  219. dFace[0, 0] = self.tau_pos
  220. dFace[-1, -1] = self.tau_neg
  221. dConv = -self.conv * (shpxEnrich.T * np.ones((self.gqOrder,
  222. numBasisFuncsEnrich)))\
  223. .T.dot(np.diag(self.wi).dot(self.shp.T))
  224. D = np.repeat(self.dist, self.numBasisFuncs) / 2 * \
  225. block_diag(*[d] * (self.numEle)) + \
  226. block_diag(*[dFace] * (self.numEle)) +\
  227. block_diag(*[dConv] * (self.numEle))
  228. eleMat = namedtuple('eleMat', ['A', 'B', 'BonU', 'D'])
  229. return eleMat(A, B, BonQ, D)
  230. def interfaceGen(self):
  231. """Generate matrices associated with interfaces"""
  232. if self.enrich is not None:
  233. # when enrich is given
  234. # provide matrices used in the DWR residual calculation
  235. numBasisFuncs = self.numBasisFuncs + self.enrich
  236. else:
  237. numBasisFuncs = self.numBasisFuncs
  238. tau_pos, tau_neg, conv = self.tau_pos, self.tau_neg, self.conv
  239. # elemental h
  240. h = np.zeros((2, 2))
  241. h[0, 0], h[-1, -1] = -conv - tau_pos, conv - tau_neg
  242. # mappinng matrix
  243. map_h = np.zeros((2, self.numEle), dtype=int)
  244. map_h[:, 0] = np.arange(2)
  245. for i in np.arange(1, self.numEle):
  246. map_h[:, i] = np.arange(
  247. map_h[2 - 1, i - 1], map_h[2 - 1, i - 1] + 2)
  248. # assemble H and eliminate boundaries
  249. H = np.zeros((self.numEle + 1, self.numEle + 1))
  250. for i in range(self.numEle):
  251. for j in range(2):
  252. m = map_h[j, i]
  253. for k in range(2):
  254. n = map_h[k, i]
  255. H[m, n] += h[j, k]
  256. H = H[1:self.numEle][:, 1:self.numEle]
  257. # elemental e
  258. e = np.zeros((numBasisFuncs, 2))
  259. e[0, 0], e[-1, -1] = -conv - tau_pos, conv - tau_neg
  260. # mapping matrix
  261. map_e_x = np.arange(numBasisFuncs * self.numEle,
  262. dtype=int).reshape(self.numEle,
  263. numBasisFuncs).T
  264. map_e_y = map_h
  265. # assemble global E
  266. E = np.zeros((numBasisFuncs * self.numEle, self.numEle + 1))
  267. for i in range(self.numEle):
  268. for j in range(numBasisFuncs):
  269. m = map_e_x[j, i]
  270. for k in range(2):
  271. n = map_e_y[k, i]
  272. E[m, n] += e[j, k]
  273. E = E[:, 1:self.numEle]
  274. # elemental c
  275. c = np.zeros((numBasisFuncs, 2))
  276. c[0, 0], c[-1, -1] = -1, 1
  277. # assemble global C
  278. C = np.zeros((numBasisFuncs * self.numEle, self.numEle + 1))
  279. for i in range(self.numEle):
  280. for j in range(numBasisFuncs):
  281. m = map_e_x[j, i]
  282. for k in range(2):
  283. n = map_e_y[k, i]
  284. C[m, n] += c[j, k]
  285. C = C[:, 1:self.numEle]
  286. # elemental g
  287. g = np.zeros((2, numBasisFuncs))
  288. g[0, 0], g[-1, -1] = tau_pos, tau_neg
  289. # mapping matrix
  290. map_g_x = map_h
  291. map_g_y = np.arange(numBasisFuncs * self.numEle,
  292. dtype=int).reshape(self.numEle,
  293. numBasisFuncs).T
  294. # assemble global G
  295. G = np.zeros((self.numEle + 1, numBasisFuncs * self.numEle))
  296. for i in range(self.numEle):
  297. for j in range(2):
  298. m = map_g_x[j, i]
  299. for k in range(numBasisFuncs):
  300. n = map_g_y[k, i]
  301. G[m, n] += g[j, k]
  302. G = G[1:self.numEle, :]
  303. faceMat = namedtuple('faceMat', ['C', 'E', 'G', 'H'])
  304. return faceMat(C, E, G, H)