postprocess.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. """
  2. A module for postprocessing the numerical results from HDPG1d solver.
  3. """
  4. import matplotlib.pyplot as plt
  5. import numpy as np
  6. class utils(object):
  7. def __init__(self, solution):
  8. self.solution = solution
  9. exactNumEle = 500
  10. exactBasisFuncs = 5
  11. self.solution.coeff.numEle = exactNumEle
  12. self.solution.coeff.pOrder = exactBasisFuncs - 1
  13. self.solution.mesh = np.linspace(0, 1, exactNumEle + 1)
  14. # approximate the exact solution for general problems
  15. # self.exactSol = self.solution.solveLocal()[0][exactNumEle * exactBasisFuncs - 1]
  16. # for the reaction diffusion test problem, we know the exact solution
  17. self.exactSol = np.sqrt(self.solution.coeff.diffusion)
  18. def errorL2(self):
  19. errorL2 = 0.
  20. numEle = self.solution.coeff.numEle
  21. self.solution.numEle = numEle
  22. numBasisFuncs = self.solution.coeff.pOrder + 1
  23. # solve on the uniform mesh
  24. self.solution.mesh = np.linspace(0, 1, numEle + 1)
  25. self.solution.solveLocal()
  26. gradState, _ = self.solution.separateSoln(self.solution.primalSoln)
  27. errorL2 = np.abs(gradState[numBasisFuncs * numEle - 1] - self.exactSol)
  28. return errorL2
  29. def uniConv(self):
  30. numBasisFuncs = np.arange(
  31. self.solution.numBasisFuncs, self.solution.numBasisFuncs + 1)
  32. numEle = 2**np.arange(1, 9)
  33. uniError = np.zeros((numEle.size, numBasisFuncs.size))
  34. for i in range(numBasisFuncs.size):
  35. self.solution.coeff.pOrder = numBasisFuncs[i] - 1
  36. for j, n in enumerate(numEle):
  37. self.solution.coeff.numEle = n
  38. uniError[j, i] = self.errorL2()
  39. return numEle, uniError
  40. def convHistory(self):
  41. """Plot the uniform and adaptive convergence history"""
  42. plt.figure(2)
  43. trueErrorList = self.solution.trueErrorList
  44. trueErrorList[1] = np.abs(trueErrorList[1] - self.exactSol)
  45. estErrorList = self.solution.estErrorList
  46. plt.loglog(trueErrorList[0],
  47. trueErrorList[1], '-ro')
  48. numEle, errorL2 = self.uniConv()
  49. plt.loglog(numEle, errorL2, '-o')
  50. plt.loglog(estErrorList[0],
  51. estErrorList[1], '--', color='#1f77b4')
  52. plt.xlabel('Number of elements', fontsize=17)
  53. plt.ylabel('Error', fontsize=17)
  54. plt.grid()
  55. plt.legend(('Adaptive', 'Uniform', 'Estimator'), loc=3, fontsize=15)
  56. plt.show()